Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772732

RESUMO

In view of the difficulties regarding that airborne navigation equipment relies on imports and the expensive domestic high-precision navigation equipment in the manufacturing field of Chinese navigable aircraft, a dual-antenna GNSS (global navigation satellite system)/MINS (micro-inertial navigation system) integrated navigation system was developed to implement high-precision and high-reliability airborne integrated navigation equipment. First, the state equation and measurement equation of the system were established based on the classical discrete Kalman filter principle. Second, according to the characteristics of the MEMS (micro-electric-mechanical system), the IMU (inertial measurement unit) is not sensitive to Earth rotation to realize self-alignment; the magnetometer, accelerometer and dual-antenna GNSS are utilized for reliable attitude initial alignment. Finally, flight status identification was implemented by the different satellite data, accelerometer and gyroscope parameters of the aircraft in different states. The test results shown that the RMS (root mean square) of the pitch angle and roll angle error of the testing system are less than 0.05° and the heading angle error RMS is less than 0.15° under the indoor static condition. A UAV flight test was carried out to test the navigation effect of the equipment upon aircraft take-off, climbing, turning, cruising and other states, and to verify the effectiveness of the system algorithm.

2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(1): 149-157, 2022 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-35231976

RESUMO

An auxiliary dining robot is designed in this paper, which implements the humanoid feeding function with theory of inventive problem solving (TRIZ) theory and aims at the demand of special auxiliary nursing equipment. Firstly, this robot simulated the motion function of human arm by using the tandem joints of the manipulator. The end-effector used a motor-driven spoon to simulate the feeding actions of human hand. Meanwhile, the eye in hand installation style was adopted to instead the human vision to realize its automatic feeding action. Moreover, the feeding and drinking actions of the dining robot were considered comprehensively with the flexibility of spatial movement under the lowest degree of freedom (DOF) configuration. The structure of the dining robot was confirmed by analyzing its stresses and discussing the specific application scenarios under this condition. Finally, the simulation results demonstrate high-flexibility of the dining robot in the workspace with lowest DOF configuration.


Assuntos
Robótica , Simulação por Computador , Desenho de Equipamento , Mãos , Humanos , Movimento , Robótica/métodos
3.
Micromachines (Basel) ; 11(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906816

RESUMO

It is of great importance for pipeline systems to be is efficient, cost-effective and safe during the transportation of the liquids and gases. However, underground pipelines often experience leaks due to corrosion, human destruction or theft, long-term Earth movement, natural disasters and so on. Leakage or explosion of the operating pipeline usually cause great economical loss, environmental pollution or even a threat to citizens, especially when these accidents occur in human-concentrated urban areas. Therefore, the surveying of the routed pipeline is of vital importance for the Pipeline Integrated Management (PIM). In this paper, a comprehensive review of the Micro-Inertial Measurement Unit (MIMU)-based intelligent Pipeline Inspection Gauge (PIG) multi-sensor fusion technologies for the transport of liquids and gases purposed for small-diameter pipeline (D < 30 cm) surveying is demonstrated. Firstly, four types of typical small-diameter intelligent PIGs and their corresponding pipeline-defects inspection technologies and defects-positioning technologies are investigated according to the various pipeline defects inspection and localization principles. Secondly, the multi-sensor fused pipeline surveying technologies are classified into two main categories, the non-inertial-based and the MIMU-based intelligent PIG surveying technology. Moreover, five schematic diagrams of the MIMU fused intelligent PIG fusion technology is also surveyed and analyzed with details. Thirdly, the potential research directions and challenges of the popular intelligent PIG surveying techniques by multi-sensor fusion system are further presented with details. Finally, the review is comprehensively concluded and demonstrated.

4.
Sensors (Basel) ; 19(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731692

RESUMO

As the restaurant industry is facing labor shortage issues, the use of meal delivery robots instead of waiters/waitresses not only allows the customers to experience the impact of robot technology but also benefits the restaurant business financially by reducing labor costs. Most existing meal delivery robots employ magnetic navigation technologies, which require magnetic strip installation and changes to the restaurant decor. Once the moving path is changed, the magnetic strips need to be re-laid. This study proposes multisource information fusion, i.e., the fusion of ultra-wide band positioning technology with an odometer and a low-cost gyroscope accelerometer, to achieve the positioning of a non-rail meal delivery robot with navigation. By using a low-cost electronic compass and gyroscope accelerometer, the delivery robot can move along a fixed orbit in a flexible and cost-effective manner with steering control. Ultra-wide band (UWB) and track estimation algorithm are combined by extended Kalman filter (EKF), and the positioning error after fusion is about 15 cm, which is accepted by restaurants. In summary, the proposed approach has some potential for commercial applications.

5.
Sensors (Basel) ; 19(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627279

RESUMO

Velocity information from the odometer is the key information in a reduced inertial sensor system (RISS), and is prone to noise corruption. In order to improve the navigation accuracy and reliability of a 3D RISS, a method based on a tracking differentiator (TD) filter was proposed to track odometer velocity and acceleration. With the TD filter, an input signal and its differential signal are estimated fast and accurately to avoid the noise amplification that is brought by the conventional differential method. The TD filter does not depend on an object model, and has less computational complexity. Moreover, the filter phase lag is decreased by the prediction process with the differential signal of the TD filter. In this study, the numerical simulation experiments indicate that the TD filter can achieve a better performance on random noises and outliers than traditional numerical differentiation. The effectiveness of the TD filter on a 3D RISS is demonstrated using a group of offline data that were obtained from an actual vehicle experiment. We conclude that the TD filter can not only quickly and correctly filter velocity and estimate acceleration from the odometer velocity for a 3D RISS, but can also improve the reliability of the 3D RISS.

6.
Sensors (Basel) ; 19(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443296

RESUMO

To solve the self-alignment problem of the Strapdown Inertial Navigation System (SINS), a novel adaptive filter based on Complementary Ensemble Empirical Mode Decomposition (CEEMD) is proposed. The Gravitational Apparent Motion (GAM) is used in the coarse alignment, and the problem of obtaining the attitude matrix between the body frame and the navigation frame is attributed to obtaining the matrix between the initial body frame and the current navigation frame using two gravitational apparent motion vectors at different moments. However, the accuracy and time of this alignment method always suffer from the measurement noise of sensors. Thus, a novel adaptive filter based on CEEMD using an l 2 -norm to calculate the similarity measure between the Probability Density Function (PDF) of each Intrinsic Mode Function (IMF) and the original signal is proposed to denoise the measurements of the accelerometer. Furthermore, the advantage of this filter is verified by comparing with other conventional denoising methods, such as PDF-based EMD (EMD-PDF) and the Finite Impulse Response (FIR) digital low-pass filter method. The results of the simulation and experiments indicate that the proposed method performs better than the conventional methods in both alignment time and alignment accuracy.

7.
Sensors (Basel) ; 19(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003508

RESUMO

Modern parking lots have gradually developed into underground garages to improve the efficient use of space. However, the complex design of parking lots also increases the demands on vehicle navigation. The traditional method of navigation switching only uses satellite signals. After the Position Dilution Of Precision (PDOP) of satellite signals is over the limit, vehicle navigation will enter indoor mode. It is not suitable for vehicles in underground garages to switch modes with a fast-response system. Therefore, this paper chooses satellite navigation, inertial navigation, and the car system to combine navigation. With the condition that the vehicle can freely travel through indoor and outdoor environments, high-precision outdoor environment navigation is used to provide the initial state of underground navigation. The position of the vehicle underground is calculated by the Dead Reckoning (DR) navigation system. This paper takes advantage of the Extended Kalman Filter (EKF) algorithm to provide two freely switchable navigation modes for vehicles in ground and underground garages. The continuity, robustness, fast response, and low cost of the indoor and outdoor switching navigation methods are verified in real-time systems.

8.
Sensors (Basel) ; 19(1)2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30621314

RESUMO

Robot navigation is a fundamental problem in robotics and various approaches have been developed to cope with this problem. Despite the great success of previous approaches, learning-based methods are receiving growing interest in the research community. They have shown great efficiency in solving navigation tasks and offer considerable promise to build intelligent navigation systems. This paper presents a goal-directed robot navigation system that integrates global planning based on goal-directed end-to-end learning and local planning based on reinforcement learning (RL). The proposed system aims to navigate the robot to desired goal positions while also being adaptive to changes in the environment. The global planner is trained to imitate an expert's navigation between different positions by goal-directed end-to-end learning, where both the goal representations and local observations are incorporated to generate actions. However, it is trained in a supervised fashion and is weak in dealing with changes in the environment. To solve this problem, a local planner based on deep reinforcement learning (DRL) is designed. The local planner is first implemented in a simulator and then transferred to the real world. It works complementarily to deal with situations that have not been met during training the global planner and is able to generalize over different situations. The experimental results on a robot platform demonstrate the effectiveness of the proposed navigation system.

9.
Sensors (Basel) ; 17(9)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28880203

RESUMO

Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.

10.
Sensors (Basel) ; 15(5): 10547-68, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25951339

RESUMO

The artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligent techniques, which is widely utilized for optimization purposes. Fiber optic gyroscope (FOG) error parameters such as scale factors, biases and misalignment errors are relatively unstable, especially with the environmental disturbances and the aging of fiber coils. These uncalibrated error parameters are the main reasons that the precision of FOG-based strapdown inertial navigation system (SINS) degraded. This research is mainly on the application of a novel artificial fish swarm algorithm (NAFSA) on FOG error coefficients recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using artificial fishes' pervious experiences, lack of existing balance between exploration and exploitation, and high computational cost) of the standard AFSA during the optimization process. To solve these weak points, functional behaviors and the overall procedures of AFSA have been improved with some parameters eliminated and several supplementary parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS) approaches. This combination leads to maximum utilization of the involved approaches for FOG error coefficients recalibration. After that, the NAFSA is verified with simulation and experiments and its priorities are compared with that of the conventional calibration method and optimal AFSA. Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration.


Assuntos
Inteligência Artificial , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...